Features

- 1600 Wall System™2 is an outside glazed structurally silicone glazed curtain wall
- 1600 Wall System™2 has a 2-1/2" (63.5) sight line
- Standard 6" (152.4) or 7-1/2" (190.5) depth systems
- Standard infill options 1/4" (6.4) and 1" (25.4), other infills available
- Thermally Broken by means of a continuous 1/4" (6.4) low conductance spacer
- Concealed fastener joinery creates smooth, monolithic appearance
- Open-back horizontals and perimeters are available for cost savings
- Shear block fabrication method
- Corners and splayed mullions available
- Offers integrated entrance framing systems
- Silicon compatible glazing materials for long-lasting seals
- 1600 Wall System™2 has been small and large missile impact and cycle tested
- Two color option
- Permanodic™ anodized finishes in seven choices
- Painted finishes in standard and custom choices

Optional Features

- Steel reinforcing available
- Rain screen and backpans
- Optional deep profile and bull-nose covers available
- Deep and heavy-weight mullions available
- Fiberglass pressure plates available
- Veneer system available
- Integrates with standard Kawneer windows and GLASSvent™ windows for curtain wall
- Integrates with Versoleil™ SunShade Outrigger System and Horizontal Single Blade Systems
- Profit$Maker™ plus die sets available
- Hurricane impact resistant framing option: 7-13/16" (198.4)

Product Applications

- Ideal for low to mid-rise applications where high performance is desired
- It is also the right choice for high span applications

For specific product applications, Consult your Kawneer representative.
Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.
Architects – Most extrusion and window types illustrated in this catalog are standard products for Kawneer. These concepts have been expanded and modified to afford you design freedom. Some miscellaneous details are non-standard and are intended to demonstrate how the system can be modified to expand design flexibility. Please contact your Kawneer representative for further assistance.

PICTORIAL VIEW ... 5
1” INFILL DETAILS... 6
1/4” INFILL DETAILS... 7
ENTRANCE DETAILS ... 8,9
CORNERS ... 10
SPLAYED MULLION OPTIONS ... 11
GLASSvent™ WINDOWS FOR CURTAIN WALL/WINDOWS12
BACKPAN AND MISCELLANEOUS DETAILS13
MISCELLANEOUS FRAMING ..14
HURRICANE IMPACT RESISTANT DETAILS15,16
ANCHORING ..17,18
WIND LOAD CHARTS...19-30
DEADLOAD CHARTS ..31-33
THERMAL CHARTS ...34-42

LAWS AND BUILDING AND SAFETY CODES GOVERNING THE DESIGN AND USE OF GLAZED ENTRANCE, WINDOW, AND CURTAIN WALL PRODUCTS VARY WIDELY. KAWNEER DOES NOT CONTROL THE SELECTION OF PRODUCT CONFIGURATIONS, OPERATING HARDWARE, OR GLAZING MATERIALS, AND ASSUMES NO RESPONSIBILITY THEREFOR.

Metric (SI) conversion figures are included throughout these details for reference. Numbers in parentheses () are millimeters unless otherwise noted.

The following metric (SI) units are found in these details:

- m – meter
- cm – centimeter
- mm – millimeter
- s – second
- Pa – pascal
- MPa – megapascal

Kawneer reserves the right to change configurations without prior notice when deemed necessary for product improvement.
Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

kawneer.com

1600 Wall System™2 Curtain Wall

JULY, 2016

ADMD020EN

PICTORIAL VIEW
Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

SCALE 3" = 1'-0"

ELEVATION IS NUMBER KEYED TO DETAILS

OPTIONAL STEEL REINFORCING AS REQUIRED
Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Scale 3" = 1'-0"

Elevation is number keyed to details.

Optional steel reinforcing as required.
1600 Wall System™2 Curtain Wall

ENTRANCE DETAILS (1" INFILL)

SCALE 3" = 1'-0"

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

© Kawneer Company, Inc., 2014

kawneer.com
SCALE 3" = 1'-0"

B/H OR O/P

ELEVATION IS NUMBER KEYED TO DETAILS

C/H

DOOR JAMB
BUTT HUNG OR OFFSET PIVOT

TRANSOM BAR
BUTT HUNG OR OFFSET PIVOT WITH SURFACE CLOSER OR FLOOR CLOSER

TRANSOM BAR
CENTER HUNG CONCEALED OVERHEAD OR FLOOR CLOSER

DOOR JAMB
CENTER HUNG

1A

1

2

3

4

3/4" (19.0) TYP.
1600 Wall System™2 Curtain Wall

CORNERS

NOTE: 1” SYSTEM SHOWN, 1/4” SYSTEM SIMILAR.

90° OUTSIDE CORNER

90° INSIDE CORNER

135° OUTSIDE CORNER

135° INSIDE CORNER

SCALE 3" = 1'-0"
SCALE 3" = 1'-0"

OUTSIDE SPALLED MULLIONS

INSIDE SPALLED MULLIONS
GLASSvent™ WINDOWS FOR CURTAIN WALL

NOTE: Other vent types can be accommodated. Contact your Kawneer representative for other options.

8225TL THERMAL WINDOWS

GLASSvent™ WINDOWS FOR CURTAIN WALL

NOTE: Other vent types can be accommodated. Contact your Kawneer representative for other options.

8225TL THERMAL WINDOWS

NOTE: Other vent types can be accommodated. Contact your Kawneer representative for other options.
1600 Wall System™2 Curtain Wall
BACKPAN AND MISCELLANEOUS DETAILS

SCALE 3" = 1'-0"

ELEVATION IS NUMBER KEYED TO DETAILS

NOTE: 6" SYSTEM SHOWN, 7-1/2" SYSTEM SIMILAR

HEAD TRANSOM AT PARAPET FLASHING

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.

CONSTRUCTION JOINT
1/2" (12.7) MAX (ALLOWS +/-1/4" MOVEMENT)

MULLION AT SPANDREL

MULLION LENGTH

D.L.O.

MULLION LENGTH

D.L.O.
1600 Wall System™2 Curtain Wall

MISCELLANEOUS FRAMING

SCALE 3" = 1'-0"

Architects – Most extrusion and window types illustrated in this catalog are standard products for Kawneer. These concepts have been expanded and modified to afford you design freedom. Some miscellaneous details are non-standard and are intended to demonstrate how the system can be modified to expand design flexibility. Please contact your Kawneer representative for further assistance.

OPTIONAL COVERS

VENEER SYSTEM

NOTE:
STOOL TRIMS REQUIRE 069271 TRIM CLIP PACKAGE

INTERIOR STOOL TRIM

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc. 2014

Kawneer Company, Inc. reserves the right to make changes in the details and specifications herein without prior notice. This catalog is issued for the purpose of illustrating our products. It is made without representation or warranty as to the suitability of our products for any special purpose or the ability of any contractor or builder to install them.

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

kawneer.com
NOTE: DETAILS SHOWN WITH 1-5/16" INFILL AND ARE GLAZED FOR LARGE MISSILE IMPACT (LMI). SEE NEXT PAGE FOR OTHER GLAZING OPTIONS.
1600 Wall System™2 Curtain Wall

HURRICANE RESISTANT DETAILS

SCALE 3" = 1'-0"

NOTE: 350 IR DOORS ARE USED WITH IMPACT FRAMING.
 DOORS ARE GLAZED WITH 9/16" INFILL.

DOOR JAMB
AT MULLION
1-5/16" INfill
(LMI)

DOOR JAMB
AT PERIMETER

7/8" (22.2)

TRANSOM BAR
1-5/16" INfill (LMI)

OPTIONAL
10" DEEP SYSTEM
1-5/16" INfill (LMI)

GLAZING OPTIONS

1-5/16" INfill (SMI)
SMALL MISSILE
IMPACT

1-5/16" INfill
SMALL MISSILE (SMI)
OVER
LARGE MISSILE (LMI)
Actual project conditions will determine specific anchor design. Details on this page are for reference only.
Actual project conditions will determine specific anchor design. Details on this page are for reference only.
WIND LOAD CHARTS

Mullions are designed for deflection limitations in accordance with AAMA TIR-A11 of L/175 up to 13'-6" and L/240 +1/4" above 13'-6". These curves are for mullions WITH HORIZONTALS and are based on engineering calculations for stress and deflection. Allowable wind load stress for ALUMINUM 15,152 psi (104MPa), STEEL 30,000 psi (207MPa). Charted curves, in all cases are for the limiting value. Wind load charts contained herein are based upon nominal wind load utilized in allowable stress design. A conversion from Load Resistance Factor Design (LRFD) is provided. To convert ultimate wind loads to nominal loads, multiply ultimate wind loads by a factor of 0.6 per ASCE/SEI 7. A 4/3 increase in allowable stress has not been used to develop these curves. For special situations not covered by these curves, contact your Kawneer representative for additional information.

DEADLOAD CHARTS

Horizontal or deadload limitations are based upon 1/8" (3.2), maximum allowable deflection at the center of an intermediate horizontal member. The accompanying charts are calculated for 1" (25.4) thick insulating glass or 1/4" (6.4) thick glass supported on two setting blocks placed at the loading points shown.
Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

<table>
<thead>
<tr>
<th>Allowable Stress Design Load</th>
<th>LRFD Ultimate Design Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = 20 PSF (960)</td>
<td>33 PSF (1580)</td>
</tr>
<tr>
<td>B = 30 PSF (1440)</td>
<td>50 PSF (2400)</td>
</tr>
<tr>
<td>C = 40 PSF (1920)</td>
<td>67 PSF (3200)</td>
</tr>
<tr>
<td>D = 50 PSF (2400)</td>
<td>83 PSF (4000)</td>
</tr>
<tr>
<td>E = 60 PSF (2880)</td>
<td>100 PSF (4790)</td>
</tr>
</tbody>
</table>

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2014

WIND LOAD CHARTS (S.S.G.)

ADMD020EN

kawneer.com
1600 Wall System™2 Curtain Wall

WIND LOAD CHARTS (S.S.G.)

SINGLE SPAN

<table>
<thead>
<tr>
<th>Allowable Stress Design Load</th>
<th>LRFD Ultimate Design Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = 20 PSF (960)</td>
<td>33 PSF (1580)</td>
</tr>
<tr>
<td>B = 30 PSF (1440)</td>
<td>50 PSF (2400)</td>
</tr>
<tr>
<td>C = 40 PSF (1920)</td>
<td>67 PSF (3200)</td>
</tr>
<tr>
<td>D = 50 PSF (2400)</td>
<td>83 PSF (4000)</td>
</tr>
<tr>
<td>E = 60 PSF (2880)</td>
<td>100 PSF (4790)</td>
</tr>
</tbody>
</table>

TWIN SPAN

- **I** = 5.14 ft (1.56 m)
- **S** = 2.385 kips/m² (39.08 kPa)

- **162027**
 - I = 6.42 ft² (267.38 m²)
 - S = 2.93 kips/m² (48.01 kPa)

- **162028**
 - I = 8.08 ft² (336.64 m²)
 - S = 2.93 kips/m² (48.01 kPa)
Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.
Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

<table>
<thead>
<tr>
<th>Allowable Stress Design Load</th>
<th>LRFD Ultimate Design Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = 20 PSF (960)</td>
<td>33 PSF (1580)</td>
</tr>
<tr>
<td>B = 30 PSF (1440)</td>
<td>50 PSF (2400)</td>
</tr>
<tr>
<td>C = 40 PSF (1920)</td>
<td>67 PSF (3200)</td>
</tr>
<tr>
<td>D = 50 PSF (2400)</td>
<td>83 PSF (4000)</td>
</tr>
<tr>
<td>E = 60 PSF (2880)</td>
<td>108 PSF (4790)</td>
</tr>
</tbody>
</table>

1600 Wall System™2 Curtain Wall

WIND LOAD CHARTS (1" INFILL)

MULLION HEIGHT IN FEET

MULLION CENTERS IN FEET

SINGLE SPAN
162028 W/162300

METERS

Ia = 8,088(336.64 x 10^4)
Sa = 2,930(48,01 x 10^3)
Is = 9,347(389,05 x 10^4)
Ss = 4,100(67,19 x 10^3)
Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

<table>
<thead>
<tr>
<th>Design Load</th>
<th>LRFD Ultimate Design Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = 20 PSF (960)</td>
<td>33 PSF (1580)</td>
</tr>
<tr>
<td>B = 30 PSF (1440)</td>
<td>50 PSF (2400)</td>
</tr>
<tr>
<td>C = 40 PSF (1920)</td>
<td>67 PSF (3200)</td>
</tr>
<tr>
<td>D = 50 PSF (2400)</td>
<td>83 PSF (4000)</td>
</tr>
<tr>
<td>E = 60 PSF (2880)</td>
<td>100 PSF (4790)</td>
</tr>
</tbody>
</table>

I = 5.035(209.57 x 10^4)
S = 1.993(32.66 x 10^3)

I = 6.779(282.16 x 10^4)
S = 2.652(43.46 x 10^3)
Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

SINGLE SPAN

<table>
<thead>
<tr>
<th>MULLION CENTERS IN FEET</th>
<th>MULLION HEIGHT (METERS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

TWIN SPAN

<table>
<thead>
<tr>
<th>MULLION CENTERS IN FEET</th>
<th>MULLION HEIGHT (METERS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Allowable Stress Design Load

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

LRFD Ultimate Design Load

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>33</td>
<td>50</td>
<td>67</td>
<td>83</td>
<td>100</td>
</tr>
</tbody>
</table>

Wind Load Charts (1" Infill)

Single Span Twin Span

<table>
<thead>
<tr>
<th>I (10.135(421.85 × 10^4))</th>
<th>MULLION HEIGHT EQUALEQUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>162004</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S (3.027(49.60 × 10^3))</th>
<th>MULLION HEIGHT EQUALEQUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>162003</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Design Load

<table>
<thead>
<tr>
<th>Load (PSF)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>960</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1440</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1920</td>
<td>1580</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2400</td>
<td>2400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>2880</td>
<td>3200</td>
<td>3200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

1600 Wall System™2 Curtain Wall

WIND LOAD CHARTS (1” INFILL)

Allowable Stress Design Load

<table>
<thead>
<tr>
<th>Design Load</th>
<th>LRFD Ultimate Design Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = 20 PSF (960)</td>
<td>33 PSF (1580)</td>
</tr>
<tr>
<td>B = 30 PSF (1440)</td>
<td>50 PSF (2400)</td>
</tr>
<tr>
<td>C = 40 PSF (1920)</td>
<td>67 PSF (3200)</td>
</tr>
<tr>
<td>D = 50 PSF (2400)</td>
<td>83 PSF (4000)</td>
</tr>
<tr>
<td>E = 60 PSF (2880)</td>
<td>100 PSF (4790)</td>
</tr>
</tbody>
</table>

I = 42.441(1,766.52 x 10^4)
S = 8.816(144.47 x 10^3)
Is = 26.033(1,083.57 x 10^4)
Ss = 7.000(114.71 x 10^3)

Kawneer reserves the rights to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2014

kawneer.com
SINGLE SPAN

162004 W/162300

<table>
<thead>
<tr>
<th>Meters</th>
<th>Mullion Centers in Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
</tr>
</tbody>
</table>

Allowable Stress

- **Design Load**
 - A = 20 PSF (960)
 - B = 30 PSF (1440)
 - C = 40 PSF (1920)
 - D = 50 PSF (2400)
 - E = 60 PSF (2880)

LRFD Ultimate Design Load

- A = 33 PSF (1580)
- B = 50 PSF (2400)
- C = 67 PSF (3200)
- D = 83 PSF (4000)
- E = 100 PSF (4790)

SINGLE SPAN

162004 W/162301

<table>
<thead>
<tr>
<th>Meters</th>
<th>Mullion Centers in Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
</tr>
</tbody>
</table>

Allowable Stress

- **Design Load**
 - A = 20 PSF (960)
 - B = 30 PSF (1440)
 - C = 40 PSF (1920)
 - D = 50 PSF (2400)
 - E = 60 PSF (2880)

LRFD Ultimate Design Load

- A = 33 PSF (1580)
- B = 50 PSF (2400)
- C = 67 PSF (3200)
- D = 83 PSF (4000)
- E = 100 PSF (4790)

SINGLE SPAN

162004 W/162301/302

<table>
<thead>
<tr>
<th>Meters</th>
<th>Mullion Centers in Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
</tr>
</tbody>
</table>

Allowable Stress

- **Design Load**
 - A = 20 PSF (960)
 - B = 30 PSF (1440)
 - C = 40 PSF (1920)
 - D = 50 PSF (2400)
 - E = 60 PSF (2880)

LRFD Ultimate Design Load

- A = 33 PSF (1580)
- B = 50 PSF (2400)
- C = 67 PSF (3200)
- D = 83 PSF (4000)
- E = 100 PSF (4790)

SINGLE SPAN

162004 W/162301/302/303

<table>
<thead>
<tr>
<th>Meters</th>
<th>Mullion Centers in Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
</tr>
</tbody>
</table>

Allowable Stress

- **Design Load**
 - A = 20 PSF (960)
 - B = 30 PSF (1440)
 - C = 40 PSF (1920)
 - D = 50 PSF (2400)
 - E = 60 PSF (2880)

LRFD Ultimate Design Load

- A = 33 PSF (1580)
- B = 50 PSF (2400)
- C = 67 PSF (3200)
- D = 83 PSF (4000)
- E = 100 PSF (4790)
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

SINGLE SPAN

TWIN SPAN

<table>
<thead>
<tr>
<th>Allowable Stress</th>
<th>LRFD Ultimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = 20 PSF (960)</td>
<td>33 PSF (1580)</td>
</tr>
<tr>
<td>B = 30 PSF (1440)</td>
<td>50 PSF (2400)</td>
</tr>
<tr>
<td>C = 40 PSF (1920)</td>
<td>67 PSF (3200)</td>
</tr>
<tr>
<td>D = 50 PSF (2400)</td>
<td>83 PSF (4000)</td>
</tr>
<tr>
<td>E = 60 PSF (2880)</td>
<td>100 PSF (4790)</td>
</tr>
</tbody>
</table>

I = 3.662(152.42 x 10^4)
S = 1.662(27.24 x 10^3)

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2014
1600 Wall System™2 Curtain Wall

WIND LOAD CHARTS (1/4" INFILL)

<table>
<thead>
<tr>
<th>Single Span</th>
<th>Twin Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowable Stress</td>
<td>LRFD Ultimate</td>
</tr>
<tr>
<td>Design Load</td>
<td>Design Load</td>
</tr>
<tr>
<td>A = 20 PSF (960)</td>
<td>33 PSF (1580)</td>
</tr>
<tr>
<td>B = 30 PSF (1440)</td>
<td>50 PSF (2400)</td>
</tr>
<tr>
<td>C = 40 PSF (1920)</td>
<td>67 PSF (3200)</td>
</tr>
<tr>
<td>D = 50 PSF (2400)</td>
<td>83 PSF (4000)</td>
</tr>
<tr>
<td>E = 60 PSF (2880)</td>
<td>100 PSF (4790)</td>
</tr>
</tbody>
</table>

SINGLE SPAN

TWIN SPAN
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

LAW LOAD CHARTS (1/4" INFILL)

SINGLE SPAN 162016 W/162300

SINGLE SPAN 162016 W/162301

SINGLE SPAN 162016 W/162301/302/303

SINGLE SPAN 162016 W/162301/302

SINGLE SPAN 162016 with 162300

SINGLE SPAN 162016 with 162301

SINGLE SPAN 162016 with 162301/302

SINGLE SPAN 162016 with 162301/303

Allowable Stress Design Load LRFD Ultimate Design Load
A = 20 PSF (960) 33 PSF (1580)
B = 30 PSF (1440) 50 PSF (2400)
C = 40 PSF (1920) 67 PSF (3200)
D = 50 PSF (2400) 83 PSF (4000)
E = 60 PSF (2880) 100 PSF (4790)
ADMD020EN

A - 1/4" GLASS (1/4 POINT LOADING)
B - 1" GLASS (1/4 POINT LOADING)

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

kawneer.com
A - 1/4" GLASS (1/4 POINT LOADING)

5-1/4" (133.4)

162013

METERS

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.5 1 1.5 2 2.5 3 3.5

SPAN IN FEET

GLASS HEIGHT IN FEET

METERS

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.5 1 1.5 2 2.5 3 3.5

SPAN IN FEET

GLASS HEIGHT IN FEET

5-1/4" (133.4)

162014

METERS

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.5 1 1.5 2 2.5 3 3.5

SPAN IN FEET

GLASS HEIGHT IN FEET

METERS

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.5 1 1.5 2 2.5 3 3.5

SPAN IN FEET

GLASS HEIGHT IN FEET

6-3/4" (171.5)

162015

METERS

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.5 1 1.5 2 2.5 3 3.5

SPAN IN FEET

GLASS HEIGHT IN FEET

METERS

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.5 1 1.5 2 2.5 3 3.5

SPAN IN FEET

GLASS HEIGHT IN FEET

6-3/4" (171.5)

162016

METERS

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.5 1 1.5 2 2.5 3 3.5

SPAN IN FEET

GLASS HEIGHT IN FEET

METERS

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.5 1 1.5 2 2.5 3 3.5

SPAN IN FEET

GLASS HEIGHT IN FEET
Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.
Generic Project Specific U-factor Example Calculation
(Percent of Glass will vary on specific products depending on sitelines)
(Based on single bay of Curtain Wall/Window Wall)

Vision Area

<table>
<thead>
<tr>
<th>Example Glass U-factor</th>
<th>Vision Area</th>
<th>Total Area (Vision)</th>
<th>Percentage of Vision Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0.48 Btu/(ft² · h · °F)</td>
<td>5(9 + 8 + 4) = 105.0 ft²</td>
<td>5' 2-1/2" (9' 3-3/4" + 8' 2-1/2" + 4' 2-1/2") = 113.2 ft²</td>
<td>(105.0 ÷ 113.2)100 = 93%</td>
</tr>
</tbody>
</table>

Spandrel Area

<table>
<thead>
<tr>
<th>Example Spandrel R-value</th>
<th>Spandrel Area</th>
<th>Total Area (Spandrel)</th>
<th>Percent of Spandrel</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 15 (ft² · h · °F)/Btu</td>
<td>5(6 + 3) = 45.0 ft²</td>
<td>5' 2-1/2" (6' 2-1/2" + 3' 3-3/4") = 49.6 ft²</td>
<td>(49.0 ÷ 49.6)100 = 91%</td>
</tr>
</tbody>
</table>
Vision Area Chart

System U-factor vs Percent of Vision Area

Based on a single curtain wall bay of 93% vision glass and center of glass U-factor of 0.48, System U-factor is equal to 0.53 Btu/(h·ft²·°F)

Spandrel Area Chart

System U-factor vs Percent of Spandrel Area

Based on a single curtain wall bay of 91% spandrel and center of spandrel R-value of 15, system U-factor is equal to 0.21 Btu/(h·ft²·°F)
System U-Factor for Vision Glass

System U-Factors for Spandrel Glass

Note:
Values in parentheses are metric.
COG=Center of Glass.
Charts are generated per AAMA 507.
System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area

System Visible Transmittance (VT) vs Percent of Vision Area

Charts are generated per AAMA 507.
Thermal Transmittance \(^1\) (BTU/hr \cdot ft^2 \cdot °F)

<table>
<thead>
<tr>
<th>Glass U-Factor 3</th>
<th>Overall U-Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.48</td>
<td>0.56</td>
</tr>
<tr>
<td>0.46</td>
<td>0.54</td>
</tr>
<tr>
<td>0.44</td>
<td>0.53</td>
</tr>
<tr>
<td>0.42</td>
<td>0.51</td>
</tr>
<tr>
<td>0.40</td>
<td>0.49</td>
</tr>
<tr>
<td>0.38</td>
<td>0.48</td>
</tr>
<tr>
<td>0.36</td>
<td>0.46</td>
</tr>
<tr>
<td>0.34</td>
<td>0.44</td>
</tr>
<tr>
<td>0.32</td>
<td>0.42</td>
</tr>
<tr>
<td>0.30</td>
<td>0.41</td>
</tr>
<tr>
<td>0.28</td>
<td>0.39</td>
</tr>
<tr>
<td>0.26</td>
<td>0.37</td>
</tr>
<tr>
<td>0.24</td>
<td>0.36</td>
</tr>
<tr>
<td>0.22</td>
<td>0.34</td>
</tr>
<tr>
<td>0.20</td>
<td>0.32</td>
</tr>
</tbody>
</table>

SHGC Matrix \(^2\)

<table>
<thead>
<tr>
<th>Glass SHGC 3</th>
<th>Overall SHGC 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.73</td>
</tr>
<tr>
<td>0.70</td>
<td>0.68</td>
</tr>
<tr>
<td>0.65</td>
<td>0.64</td>
</tr>
<tr>
<td>0.60</td>
<td>0.59</td>
</tr>
<tr>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>0.45</td>
<td>0.46</td>
</tr>
<tr>
<td>0.40</td>
<td>0.41</td>
</tr>
<tr>
<td>0.35</td>
<td>0.37</td>
</tr>
<tr>
<td>0.30</td>
<td>0.32</td>
</tr>
<tr>
<td>0.25</td>
<td>0.28</td>
</tr>
<tr>
<td>0.20</td>
<td>0.23</td>
</tr>
<tr>
<td>0.15</td>
<td>0.19</td>
</tr>
<tr>
<td>0.10</td>
<td>0.14</td>
</tr>
<tr>
<td>0.05</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Visible Transmittance \(^2\)

<table>
<thead>
<tr>
<th>Glass VT 3</th>
<th>Overall VT 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>0.81</td>
</tr>
<tr>
<td>0.85</td>
<td>0.77</td>
</tr>
<tr>
<td>0.80</td>
<td>0.72</td>
</tr>
<tr>
<td>0.75</td>
<td>0.68</td>
</tr>
<tr>
<td>0.70</td>
<td>0.63</td>
</tr>
<tr>
<td>0.65</td>
<td>0.59</td>
</tr>
<tr>
<td>0.60</td>
<td>0.54</td>
</tr>
<tr>
<td>0.55</td>
<td>0.50</td>
</tr>
<tr>
<td>0.50</td>
<td>0.45</td>
</tr>
<tr>
<td>0.45</td>
<td>0.41</td>
</tr>
<tr>
<td>0.40</td>
<td>0.36</td>
</tr>
<tr>
<td>0.35</td>
<td>0.32</td>
</tr>
<tr>
<td>0.30</td>
<td>0.27</td>
</tr>
<tr>
<td>0.25</td>
<td>0.23</td>
</tr>
<tr>
<td>0.20</td>
<td>0.18</td>
</tr>
</tbody>
</table>

1" GLAZING WITH ALUMINUM PRESSURE PLATE

NOTE: For glass values that are not listed, linear interpolation is permitted.

1. U-Factors are determined in accordance with NFRC 100.
2. SHGC and VT values are determined in accordance with NFRC 200.
3. Glass properties are based on center of glass values and are obtained from your glass supplier.
4. Overall U-Factor, SHGC, and VT Matrices are based on the standard NFRC specimen size of 2000mm wide by 2000mm high (78-3/4" by 78-3/4").
1" GLAZING WITH FIBERGLASS PRESSURE PLATE

System U-Factor for Vision Glass

Note:
Values in parentheses are metric.
COG=Center of Glass.
Charts are generated per AAMA 507.

THERMAL CHARTS

Notes for System U-Factor, SHGC and VT charts:
For glass values that are not listed, linear interpolation is permitted.
Glass properties are based on center of glass values (winter conditions) and are obtained from your glass supplier.
1" GLAZING WITH FIBERGLASS PRESSURE PLATE

System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area

Charts are generated per AAMA 507.
1" GLAZING WITH FIBERGLASS PRESSURE PLATE

System Visible Transmittance (VT) vs Percent of Vision Area

Vision Ares / Total Area (%)

Charts are generated per AAMA 507.
Thermal Transmittance
(\text{BTU/hr} \cdot \text{ft}^2 \cdot °\text{F})

<table>
<thead>
<tr>
<th>Glass U-Factor 3</th>
<th>Overall U-Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.48</td>
<td>0.54</td>
</tr>
<tr>
<td>0.46</td>
<td>0.53</td>
</tr>
<tr>
<td>0.44</td>
<td>0.51</td>
</tr>
<tr>
<td>0.42</td>
<td>0.49</td>
</tr>
<tr>
<td>0.40</td>
<td>0.48</td>
</tr>
<tr>
<td>0.38</td>
<td>0.46</td>
</tr>
<tr>
<td>0.36</td>
<td>0.44</td>
</tr>
<tr>
<td>0.34</td>
<td>0.42</td>
</tr>
<tr>
<td>0.32</td>
<td>0.41</td>
</tr>
<tr>
<td>0.30</td>
<td>0.39</td>
</tr>
<tr>
<td>0.28</td>
<td>0.37</td>
</tr>
<tr>
<td>0.26</td>
<td>0.36</td>
</tr>
<tr>
<td>0.24</td>
<td>0.34</td>
</tr>
<tr>
<td>0.22</td>
<td>0.32</td>
</tr>
<tr>
<td>0.20</td>
<td>0.31</td>
</tr>
</tbody>
</table>

SHGC Matrix

<table>
<thead>
<tr>
<th>Glass SHGC 3</th>
<th>Overall SHGC 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.73</td>
</tr>
<tr>
<td>0.70</td>
<td>0.69</td>
</tr>
<tr>
<td>0.65</td>
<td>0.64</td>
</tr>
<tr>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>0.50</td>
<td>0.51</td>
</tr>
<tr>
<td>0.45</td>
<td>0.46</td>
</tr>
<tr>
<td>0.40</td>
<td>0.42</td>
</tr>
<tr>
<td>0.35</td>
<td>0.37</td>
</tr>
<tr>
<td>0.30</td>
<td>0.33</td>
</tr>
<tr>
<td>0.25</td>
<td>0.28</td>
</tr>
<tr>
<td>0.20</td>
<td>0.24</td>
</tr>
<tr>
<td>0.15</td>
<td>0.19</td>
</tr>
<tr>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>0.05</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Visible Transmittance

<table>
<thead>
<tr>
<th>Glass VT 3</th>
<th>Overall VT 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.68</td>
</tr>
<tr>
<td>0.70</td>
<td>0.63</td>
</tr>
<tr>
<td>0.65</td>
<td>0.59</td>
</tr>
<tr>
<td>0.60</td>
<td>0.54</td>
</tr>
<tr>
<td>0.55</td>
<td>0.50</td>
</tr>
<tr>
<td>0.50</td>
<td>0.45</td>
</tr>
<tr>
<td>0.45</td>
<td>0.41</td>
</tr>
<tr>
<td>0.40</td>
<td>0.36</td>
</tr>
<tr>
<td>0.35</td>
<td>0.32</td>
</tr>
<tr>
<td>0.30</td>
<td>0.27</td>
</tr>
<tr>
<td>0.25</td>
<td>0.23</td>
</tr>
<tr>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

NOTE: For glass values that are not listed, linear interpolation is permitted.

1. U-Factors are determined in accordance with NFRC 100.
2. SHGC and VT values are determined in accordance with NFRC 200.
3. Glass properties are based on center of glass values and are obtained from your glass supplier.
4. Overall U-Factor, SHGC, and VT Matrices are based on the standard NFRC specimen size of 2000mm wide by 2000mm high (78-3/4" by 78-3/4").