Features

- 1600 Wall System™3 is an inside / outside glazed captured curtain wall
- 1600 Wall System™3 has a 2-1/2" (63.5) sight line
- Standard 6" (152.4) or 7-1/2" (190.5) depth systems are compatible with System™1 and System™2
- Inside glazed verticals utilize the IsoStrut™ thermal barrier to provide superior structural and thermal performance
- Integral vertical exterior cover and thermal barrier reduce installed cost
- Horizontals utilize a thermal separator and pressure plate to allow for glazing or re-glazing from the exterior
- Standard infill options are 1/8" (3.2), 1/4" (6.4) and 1" (25.4)
- Thermally Broken by means of a continuous 1/4" (6.4) low conductance spacer
- Concealed fastener joinery creates smooth, monolithic appearance
- Shear block fabrication method
- Standard 90 and 135 degree inside and outside corners available
- Offers integrated entrance framing systems
- Peroxide-cure high performance EPDM silicone compatible glazing materials for long-lasting seals
- Two color option
- Permanodic™ anodized finishes in seven choices
- Painted finishes in standard and custom choices

Optional Features

- Steel reinforcing available
- Integrates with standard Kawneer windows and GLASSvent™ windows for curtain wall
- 1600 PowerWall™ solar photovoltaic (PV) infill in lieu of glass

Product Applications

- Ideal for low-rise to high-rise curtain wall applications where inside glazing and high performance is desired

For specific product applications, Consult your Kawneer representative.
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.
Architects – Most extrusion and window types illustrated in this catalog are standard products for Kawneer. These concepts have been expanded and modified to afford you design freedom. Some miscellaneous details are non-standard and are intended to demonstrate how the system can be modified to expand design flexibility. Please contact your Kawneer representative for further assistance.

LAWS AND BUILDING AND SAFETY CODES GOVERNING THE DESIGN AND USE OF GLAZED ENTRANCE, WINDOW, AND CURTAIN WALL PRODUCTS VARY WIDELY. KAWNEER DOES NOT CONTROL THE SELECTION OF PRODUCT CONFIGURATIONS, OPERATING HARDWARE, OR GLAZING MATERIALS, AND ASSUMES NO RESPONSIBILITY THEREFOR.

Metric (SI) conversion figures are included throughout these details for reference. Numbers in parentheses () are millimeters unless otherwise noted.

The following metric (SI) units are found in these details:

- m – meter
- cm – centimeter
- mm – millimeter
- s – second
- Pa – pascal
- MPa – megapascal

Kawneer reserves the right to change configurations without prior notice when deemed necessary for product improvement.
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2014
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely, Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2014

1600 Wall System™3 Curtain Wall

TYPICAL 1/4 SIZE DETAILS

EC 97911-099

JULY, 2016

SCALE 3" = 1'-0"

ELEVATION IS NUMBER KEYED TO DETAILS

NOTE:
6" SYSTEM SHOWN, 7-1/2" SIMILAR.
INSIDE GLAZED IsoStrut™ VERTICALS SHOWN.

ALTERNATE JAMB

4

5

6

3

2

7A

7

8

9

10

11

12

13

13A

NOTE:

OPTIONAL HORIZONTAL

CALC AND 7A SIMILAR.
INSIDE GLAZED IsoStrut™ VERTICALS SHOWN.
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2014

1600 Wall System™3 Curtain Wall
JULY, 2016
EC 97911-099
TYPICAL 1/4 SIZE DETAILS

SCALE 3" = 1'-0"

ELEVATION IS NUMBER KEYED TO DETAILS

NOTES:
6" SYSTEM SHOWN, 7-1/2" SIMILAR.
APPLIED PRESSURE PLATE OPTION SHOWN.
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely, Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2014

SCALE 3" = 1'-0"

ENTRANCE ADAPTERS

ELEVATION IS NUMBER KEYED TO DETAILS

NOTE:
OFFSET PIVOT/BUTT HUNG ENTRANCE SHOWN. ALSO AVAILABLE FOR CENTER HUNG

CORNERS

OUTSIDE 90° CORNER

INSIDE 90° CORNER

OUTSIDE 135° CORNER

INSIDE 135° CORNER
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2014
WIND LOAD CHARTS

Mullions are designed for deflection limitations in accordance with AAMA TIR-A11 of L/175 up to 13'-6" and L/240 +1/4" above 13'-6". These curves are for mullions WITH HORIZONTALS and are based on engineering calculations for stress and deflection. Allowable wind load stress for ALUMINUM 15,152 psi (104MPa), STEEL 30,000 psi (207MPa). Charted curves, in all cases are for the limiting value. Wind load charts contained herein are based upon nominal wind load utilized in allowable stress design. A conversion from Load Resistance Factor Design (LRFD) is provided. To convert ultimate wind loads to nominal loads, multiply ultimate wind loads by a factor of 0.6 per ASCE/SEI 7. A 4/3 increase in allowable stress has not been used to develop these curves. For special situations not covered by these curves, contact your Kawneer representative for additional information.

DEADLOAD CHARTS

Horizontal or deadload limitations are based upon 1/8" (3.2) maximum allowable deflection at the center of an intermediate horizontal member. The accompanying charts are calculated for 1/4" (6.4) and 1" (25.4) thick glass supported on two setting blocks placed at the loading points shown.
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely, Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2014

<table>
<thead>
<tr>
<th>Allowable Stress Design Load</th>
<th>LRFD Ultimate Design Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = 20 PSF (960)</td>
<td>33 PSF (1580)</td>
</tr>
<tr>
<td>B = 30 PSF (1440)</td>
<td>50 PSF (2400)</td>
</tr>
<tr>
<td>C = 40 PSF (1920)</td>
<td>67 PSF (3200)</td>
</tr>
<tr>
<td>D = 50 PSF (2400)</td>
<td>83 PSF (4000)</td>
</tr>
<tr>
<td>E = 60 PSF (2880)</td>
<td>100 PSF (4790)</td>
</tr>
</tbody>
</table>

SINGLE SPAN
WIDTH IN METERS

![Diagram of single span wind load charts with height and width notations, showing mullion height with labels 163200 and 163201.]
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely, Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc. 2014
1600 Wall System™3 Curtain Wall

WIND LOAD CHARTS

<table>
<thead>
<tr>
<th>Allowable Stress Design Load</th>
<th>LRFD Ultimate Design Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = 20 PSF (960)</td>
<td>33 PSF (1580)</td>
</tr>
<tr>
<td>B = 30 PSF (1440)</td>
<td>50 PSF (2400)</td>
</tr>
<tr>
<td>C = 40 PSF (1920)</td>
<td>67 PSF (3200)</td>
</tr>
<tr>
<td>D = 50 PSF (2400)</td>
<td>83 PSF (4000)</td>
</tr>
<tr>
<td>E = 60 PSF (2880)</td>
<td>100 PSF (4790)</td>
</tr>
</tbody>
</table>

SINGLE SPAN
WIDTH IN METERS

HEIGHT IN METERS

WIDTH IN FEET

HEIGHT IN FEET

MULLION HEIGHT

163208

163209
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely, Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2014

Wind Load Charts

<table>
<thead>
<tr>
<th>Allowable Stress Design Load</th>
<th>LRFD Ultimate Design Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = 20 PSF (960 Pa)</td>
<td>33 PSF (1580)</td>
</tr>
<tr>
<td>B = 30 PSF (1440 Pa)</td>
<td>50 PSF (2400)</td>
</tr>
<tr>
<td>C = 40 PSF (1920 Pa)</td>
<td>67 PSF (3200)</td>
</tr>
<tr>
<td>D = 50 PSF (2400 Pa)</td>
<td>83 PSF (4000)</td>
</tr>
<tr>
<td>E = 60 PSF (2880 Pa)</td>
<td>100 PSF (4790)</td>
</tr>
</tbody>
</table>

SINGLE SPAN
WIDTH IN METERS

TWIN SPAN
WIDTH IN METERS

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2014

1600 Wall System™3 Curtain Wall

DEADLOAD CHARTS

A = 1/4 POINT LOADING
B = 1/8 POINT LOADING

1/4" GLASS
WIDTH IN METERS

1" GLASS
WIDTH IN METERS

A = 1/4 POINT LOADING
B = 1/8 POINT LOADING
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely, Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2014

A = 1/4 POINT LOADING
B = 1/8 POINT LOADING

1/4" GLASS
WIDTH IN METERS

1" GLASS
WIDTH IN METERS

163010
163004

163010
163005

A = 1/4 POINT LOADING
B = 1/8 POINT LOADING
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely, Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

A = 1/4 POINT LOADING
B = 1/8 POINT LOADING

1/4" GLASS
WIDTH IN METERS

1" GLASS
WIDTH IN METERS

DEADLOAD CHARTS

A = 1/4 POINT LOADING
B = 1/8 POINT LOADING

163025

163026
Generic Project Specific U-factor Example Calculation
(Percent of Glass will vary on specific products depending on sitelines)
(Based on single bay of Curtain Wall/Window Wall)

Vision Area

Example Glass U-factor = 0.48 Btu/(ft² h · °F)
Vision Area = 5(9 + 8 + 4) = 105.0 ft²
Total Area (Vision) = 5' 2-1/2"(9' 3-3/4" + 8' 2-1/2" + 4' 2-1/2") = 113.2 ft²
Percent of Vision Glass = (Vision Area ÷ Total Area)100 = (105.0 ÷ 113.2)100 = 93%

Spandrel Area

Example Spandrel R-value = 15 (ft² h · °F)/Btu
Spandrel Area = 5(6 + 3) = 45.0 ft²
Total Area (Spandrel) = 5' 2-1/2"(6' 2-1/2" + 3' 3-3/4") = 49.6 ft²
Percent of Spandrel = (Spandrel Area ÷ Total Area)100 = (45.0 ÷ 49.6)100 = 91%
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2014

Vision Area Chart

Based on a single curtain wall bay of 93% vision glass and center of glass U-factor of 0.48, System U-factor is equal to 0.53 Btu/(h·ft·°F).

Spandrel Area Chart

Based on a single curtain wall bay of 91% spandrel and center of spandrel R-value of 15, system U-factor is equal to 0.21 Btu/(h·ft·°F).

Example (Not for Design)
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely, Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2014

Note:
Values in parentheses are metric.
COG = Center Of Glass.
Charts are generated per AAMA 507.

System U-Factors for Vision Glass

System U-Factors for Spandrel Glass
System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area

Vision Area / Total Area (%)

Charts are generated per AAMA 507.

System Visible Transmittance (VT) vs Percent of Vision Area

Vision Area / Total Area (%)

Charts are generated per AAMA 507.
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely, Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2014

Thermal Transmittance

<table>
<thead>
<tr>
<th>Glass U-Factor</th>
<th>Overall U-Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.48</td>
<td>0.56</td>
</tr>
<tr>
<td>0.46</td>
<td>0.55</td>
</tr>
<tr>
<td>0.44</td>
<td>0.53</td>
</tr>
<tr>
<td>0.42</td>
<td>0.51</td>
</tr>
<tr>
<td>0.40</td>
<td>0.49</td>
</tr>
<tr>
<td>0.38</td>
<td>0.48</td>
</tr>
<tr>
<td>0.36</td>
<td>0.46</td>
</tr>
<tr>
<td>0.34</td>
<td>0.44</td>
</tr>
<tr>
<td>0.32</td>
<td>0.43</td>
</tr>
<tr>
<td>0.30</td>
<td>0.41</td>
</tr>
<tr>
<td>0.28</td>
<td>0.39</td>
</tr>
<tr>
<td>0.26</td>
<td>0.37</td>
</tr>
<tr>
<td>0.24</td>
<td>0.36</td>
</tr>
<tr>
<td>0.22</td>
<td>0.34</td>
</tr>
<tr>
<td>0.20</td>
<td>0.32</td>
</tr>
</tbody>
</table>

NOTE: For glass values that are not listed, linear interpolation is permitted.

1. U-Factors are determined in accordance with NFRC 100.
2. SHGC and VT values are determined in accordance with NFRC 200.
3. Glass properties are based on center of glass values and are obtained from your glass supplier.
4. Overall U-Factor, SHGC, and VT Matrices are based on the standard NFRC specimen size of 2000mm wide by 2000mm high (78-3/4" by 78-3/4").

SHGC Matrix

<table>
<thead>
<tr>
<th>Glass SHGC</th>
<th>Overall SHGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.69</td>
</tr>
<tr>
<td>0.70</td>
<td>0.65</td>
</tr>
<tr>
<td>0.65</td>
<td>0.60</td>
</tr>
<tr>
<td>0.60</td>
<td>0.56</td>
</tr>
<tr>
<td>0.55</td>
<td>0.51</td>
</tr>
<tr>
<td>0.50</td>
<td>0.47</td>
</tr>
<tr>
<td>0.45</td>
<td>0.43</td>
</tr>
<tr>
<td>0.40</td>
<td>0.38</td>
</tr>
<tr>
<td>0.35</td>
<td>0.34</td>
</tr>
<tr>
<td>0.30</td>
<td>0.29</td>
</tr>
<tr>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>0.05</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Visible Transmittance

<table>
<thead>
<tr>
<th>Glass VT</th>
<th>Overall VT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>0.81</td>
</tr>
<tr>
<td>0.85</td>
<td>0.76</td>
</tr>
<tr>
<td>0.80</td>
<td>0.72</td>
</tr>
<tr>
<td>0.75</td>
<td>0.67</td>
</tr>
<tr>
<td>0.70</td>
<td>0.63</td>
</tr>
<tr>
<td>0.65</td>
<td>0.58</td>
</tr>
<tr>
<td>0.60</td>
<td>0.54</td>
</tr>
<tr>
<td>0.55</td>
<td>0.49</td>
</tr>
<tr>
<td>0.50</td>
<td>0.45</td>
</tr>
<tr>
<td>0.45</td>
<td>0.40</td>
</tr>
<tr>
<td>0.40</td>
<td>0.36</td>
</tr>
<tr>
<td>0.35</td>
<td>0.31</td>
</tr>
<tr>
<td>0.30</td>
<td>0.27</td>
</tr>
<tr>
<td>0.25</td>
<td>0.22</td>
</tr>
<tr>
<td>0.20</td>
<td>0.18</td>
</tr>
</tbody>
</table>