FEATURES ... 2
PICTORIAL VIEW .. 3
FIXED FRAMING DETAILS .. 4
MISCELLANEOUS DETAILS ... 5
WINDLOAD / DEADLOAD CHARTS 6, 7
THERMAL CHARTS .. 8-14

Metric (SI) conversion figures are included throughout these details for reference. Numbers in parentheses () are millimeters unless otherwise noted.

The following metric (SI) units are found in these details:
- m – meter
- cm – centimeter
- mm – millimeter
- s – second
- Pa – pascal
- MPa – megapascal
Features

- 24mm IsoWeb™ glass-reinforced nylon 6/6 thermal break provides:
 - Improved condensation resistance and thermal transmittance performance capability
 - Rigid profiles with composite structural performance
 - Exterior / interior finish options
- Meets or exceeds the highest performance levels of CSA standard CAN/CSA-A440 Windows
- Vented and drained rain screen glazing cavity
- Coped joinery with screw spline fastening
- Recessed interior leg on perimeter section to accept air and / or vapour barrier membranes
- Glazing flanges on same plane providing flush appearance
- Distinctive "Top Hat" accent feature
- Accommodates 25mm and 44mm sealed unit thicknesses
- Glass installed and replaced from interior
- Tremco® VISIONstrip® exterior glazing system
- EPDM rubber air seal gasket along perimeter of 25mm sealed unit
- EPDM rubber interior gasket pre-loaded to snap-in glass stop
- Accepts 512 Ventrow Thermal Ventilator inserts
Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© 2010, Kawneer Company, Inc.

Laws and building and safety codes governing the design and use of Kawneer products, such as glazed entrance, window, and curtain wall products, vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Additional information and CAD details are available at www.kawneer.com
Additional information and CAD details are available at www.kawneer.com
WIND LOAD CHARTS

Mullions are designed for deflection limitations in accordance with AAMA TIR-A11 of L/175 up to 13'-6" and L/240 +1/4" above 13'-6". These curves are for mullions WITH HORIZONTALS and are based on engineering calculations for stress and deflection. Allowable wind load stress for ALUMINUM 15,152 psi (104MPa), STEEL 30,000 psi (207MPa). Charted curves, in all cases are for the limiting value. Wind load charts contained herein are based upon nominal wind load utilized in allowable stress design. A conversion from Load Resistance Factor Design (LRFD) is provided. To convert ultimate wind loads to nominal loads, multiply ultimate wind loads by a factor of 0.6 per ASCE/SEI 7. A 4/3 increase in allowable stress has not been used to develop these curves. For special situations not covered by these curves, contact your Kawneer representative for additional information.

DEADLOAD CHARTS

Horizontal or deadload limitations are based upon 1/16" (1.6) at operable vents or 1/8" (3.2) at fixed openings, maximum allowable deflection at the center of an intermediate horizontal member. The accompanying charts are calculated for 1" (25.4) thick insulating glass supported on two setting blocks placed at the loading points shown.
WINDLOAD LIMITATIONS

WITHOUT HORIZONTALS

WIDTH IN METRES

![Graph showing windload limitations without horizontals.](image)

HEIGHT IN FEET

WIDTH IN FEET

DEADLOAD LIMITATIONS

WIDTH IN METRES

![Graph showing deadload limitations.](image)

HEIGHT IN METRES

HEIGHT IN FEET

WIDTH IN FEET

Allowable Stress Design Load vs. LRFD Ultimate Design Load

<table>
<thead>
<tr>
<th>Category</th>
<th>Allowable Stress Design Load</th>
<th>LRFD Ultimate Design Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15 PSF (720)</td>
<td>25 PSF (1200)</td>
</tr>
<tr>
<td>B</td>
<td>20 PSF (960)</td>
<td>33 PSF (1580)</td>
</tr>
<tr>
<td>C</td>
<td>25 PSF (1200)</td>
<td>42 PSF (2000)</td>
</tr>
<tr>
<td>D</td>
<td>30 PSF (1440)</td>
<td>50 PSF (2400)</td>
</tr>
<tr>
<td>E</td>
<td>35 PSF (1680)</td>
<td>58 PSF (2780)</td>
</tr>
</tbody>
</table>
Generic Project Specific U-factor Example Calculation

(Percent of Glass will vary on specific products depending on sitelines)

Example Glass U-Factor = 0.42 Btu/hr • ft² • °F
Total Daylight Opening = 27-3/4" • 51-3/4" = 9.97 ft²
Total Projected Area = 3'-0" • 5'-0" = 15 ft²
Percent of Glass = (Total Daylight Opening ÷ Total Projected Area)100
= (9.97 ÷ 15)100 = 66%

System U-factor vs Percent of Glass Area

Based on 66% glass and center of glass (COG) U-factor of 0.42
System U-factor is equal to 0.53 Btu/hr • ft² • °F
Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© 2010, Kawneer Company, Inc.

Laws and building and safety codes governing the design and use of Kawneer products, such as glazed entrance, window, and curtain wall products, vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Notes for System U-factor, SHGC and VT charts:
For glass values that are not listed, linear interpolation is permitted.

Glass properties are based on center of glass values and are obtained from your glass supplier.
FIXED WINDOW WITH 1" GLAZING

System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area

System Visible Transmittance (VT) vs Percent of Vision Area
Thermal Transmittance

<table>
<thead>
<tr>
<th>Glass U-Factor</th>
<th>Overall U-Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.48</td>
<td>0.53</td>
</tr>
<tr>
<td>0.46</td>
<td>0.52</td>
</tr>
<tr>
<td>0.44</td>
<td>0.50</td>
</tr>
<tr>
<td>0.42</td>
<td>0.49</td>
</tr>
<tr>
<td>0.40</td>
<td>0.47</td>
</tr>
<tr>
<td>0.38</td>
<td>0.45</td>
</tr>
<tr>
<td>0.36</td>
<td>0.44</td>
</tr>
<tr>
<td>0.34</td>
<td>0.42</td>
</tr>
<tr>
<td>0.32</td>
<td>0.41</td>
</tr>
<tr>
<td>0.30</td>
<td>0.39</td>
</tr>
<tr>
<td>0.28</td>
<td>0.37</td>
</tr>
<tr>
<td>0.26</td>
<td>0.36</td>
</tr>
<tr>
<td>0.24</td>
<td>0.34</td>
</tr>
<tr>
<td>0.22</td>
<td>0.32</td>
</tr>
<tr>
<td>0.20</td>
<td>0.31</td>
</tr>
<tr>
<td>0.18</td>
<td>0.29</td>
</tr>
<tr>
<td>0.16</td>
<td>0.27</td>
</tr>
<tr>
<td>0.14</td>
<td>0.25</td>
</tr>
<tr>
<td>0.12</td>
<td>0.24</td>
</tr>
<tr>
<td>0.10</td>
<td>0.22</td>
</tr>
</tbody>
</table>

SHGC Matrix

<table>
<thead>
<tr>
<th>Glass SHGC</th>
<th>Overall SHGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.65</td>
</tr>
<tr>
<td>0.70</td>
<td>0.61</td>
</tr>
<tr>
<td>0.65</td>
<td>0.56</td>
</tr>
<tr>
<td>0.60</td>
<td>0.52</td>
</tr>
<tr>
<td>0.55</td>
<td>0.48</td>
</tr>
<tr>
<td>0.50</td>
<td>0.44</td>
</tr>
<tr>
<td>0.45</td>
<td>0.39</td>
</tr>
<tr>
<td>0.40</td>
<td>0.35</td>
</tr>
<tr>
<td>0.35</td>
<td>0.31</td>
</tr>
<tr>
<td>0.30</td>
<td>0.26</td>
</tr>
<tr>
<td>0.25</td>
<td>0.22</td>
</tr>
<tr>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Visible Transmittance

<table>
<thead>
<tr>
<th>Glass VT</th>
<th>Overall VT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.64</td>
</tr>
<tr>
<td>0.70</td>
<td>0.60</td>
</tr>
<tr>
<td>0.65</td>
<td>0.56</td>
</tr>
<tr>
<td>0.60</td>
<td>0.52</td>
</tr>
<tr>
<td>0.55</td>
<td>0.47</td>
</tr>
<tr>
<td>0.50</td>
<td>0.43</td>
</tr>
<tr>
<td>0.45</td>
<td>0.39</td>
</tr>
<tr>
<td>0.40</td>
<td>0.34</td>
</tr>
<tr>
<td>0.35</td>
<td>0.30</td>
</tr>
<tr>
<td>0.30</td>
<td>0.26</td>
</tr>
<tr>
<td>0.25</td>
<td>0.21</td>
</tr>
<tr>
<td>0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>

NOTE: For glass values that are not listed, linear interpolation is permitted.

1. U-Factors are determined in accordance with NFRC 100.
2. SHGC and VT values are determined in accordance with NFRC 200.
3. Glass properties are based on center of glass values and are obtained from your glass supplier.
4. Overall U-Factor, SHGC, and VT Matrices are based on the standard NFRC specimen size of 1,200 mm wide by 1,500 mm high (47-1/4" by 59-1/16").
FIXED WINDOW 1-3/4" TRIPLE GLAZING

Laws and building and safety codes governing the design and use of Kawneer products, such as glazed entrance, window, and curtain wall products, vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor. Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

Note:
Values in parentheses are metric.
COG = Center of Glass.
Charts are generated per AAMA 507

System U-factor vs Percent of Glass Area

Percent of Glass Area = Vision Area/Total Area

Daylight Opening / Projected Area

Notes for System U-factor, SHGC and VT charts:
For glass values that are not listed, linear interpolation is permitted.
Glass properties are based on center of glass values and are obtained from your glass supplier.

<table>
<thead>
<tr>
<th>COG U-factor</th>
<th>System U-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.32 (1.82)</td>
<td>0.70</td>
</tr>
<tr>
<td>0.30 (1.71)</td>
<td>0.65</td>
</tr>
<tr>
<td>0.28 (1.59)</td>
<td>0.60</td>
</tr>
<tr>
<td>0.26 (1.48)</td>
<td>0.55</td>
</tr>
<tr>
<td>0.24 (1.37)</td>
<td>0.50</td>
</tr>
<tr>
<td>0.22 (1.25)</td>
<td>0.45</td>
</tr>
<tr>
<td>0.20 (1.14)</td>
<td>0.40</td>
</tr>
<tr>
<td>0.18 (1.02)</td>
<td>0.35</td>
</tr>
<tr>
<td>0.16 (0.91)</td>
<td>0.30</td>
</tr>
<tr>
<td>0.14 (0.79)</td>
<td>0.25</td>
</tr>
<tr>
<td>0.12 (0.68)</td>
<td>0.20</td>
</tr>
<tr>
<td>0.10 (0.57)</td>
<td>0.15</td>
</tr>
<tr>
<td>0.08 (0.45)</td>
<td>0.10</td>
</tr>
</tbody>
</table>

© 2010, Kawneer Company, Inc.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.
FIXED WINDOW 1-3/4" TRIPLE GLAZING

Thermal Transmittance

<table>
<thead>
<tr>
<th>Glass U-Factor</th>
<th>Overall U-Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.32</td>
<td>0.39</td>
</tr>
<tr>
<td>0.30</td>
<td>0.38</td>
</tr>
<tr>
<td>0.28</td>
<td>0.36</td>
</tr>
<tr>
<td>0.26</td>
<td>0.34</td>
</tr>
<tr>
<td>0.24</td>
<td>0.33</td>
</tr>
<tr>
<td>0.22</td>
<td>0.31</td>
</tr>
<tr>
<td>0.20</td>
<td>0.30</td>
</tr>
<tr>
<td>0.18</td>
<td>0.28</td>
</tr>
<tr>
<td>0.16</td>
<td>0.26</td>
</tr>
<tr>
<td>0.14</td>
<td>0.25</td>
</tr>
<tr>
<td>0.12</td>
<td>0.23</td>
</tr>
<tr>
<td>0.10</td>
<td>0.21</td>
</tr>
<tr>
<td>0.08</td>
<td>0.19</td>
</tr>
</tbody>
</table>

NOTE: For glass values that are not listed, linear interpolation is permitted.

1. U-Factors are determined in accordance with NFRC 100.
2. SHGC and VT values are determined in accordance with NFRC 200.
3. Glass properties are based on the standard NFRC specimen size of 1,200 mm wide by 1,500 mm high (47-1/4" by 59-1/16").

SHGC Matrix

<table>
<thead>
<tr>
<th>Glass SHGC</th>
<th>Overall SHGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.65</td>
</tr>
<tr>
<td>0.70</td>
<td>0.61</td>
</tr>
<tr>
<td>0.65</td>
<td>0.56</td>
</tr>
<tr>
<td>0.60</td>
<td>0.52</td>
</tr>
<tr>
<td>0.55</td>
<td>0.48</td>
</tr>
<tr>
<td>0.50</td>
<td>0.44</td>
</tr>
<tr>
<td>0.45</td>
<td>0.39</td>
</tr>
<tr>
<td>0.40</td>
<td>0.35</td>
</tr>
<tr>
<td>0.35</td>
<td>0.31</td>
</tr>
<tr>
<td>0.30</td>
<td>0.26</td>
</tr>
<tr>
<td>0.25</td>
<td>0.22</td>
</tr>
<tr>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Visible Transmittance

<table>
<thead>
<tr>
<th>Glass VT</th>
<th>Overall VT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.64</td>
</tr>
<tr>
<td>0.70</td>
<td>0.60</td>
</tr>
<tr>
<td>0.65</td>
<td>0.56</td>
</tr>
<tr>
<td>0.60</td>
<td>0.51</td>
</tr>
<tr>
<td>0.55</td>
<td>0.47</td>
</tr>
<tr>
<td>0.50</td>
<td>0.43</td>
</tr>
<tr>
<td>0.45</td>
<td>0.39</td>
</tr>
<tr>
<td>0.40</td>
<td>0.34</td>
</tr>
<tr>
<td>0.35</td>
<td>0.30</td>
</tr>
<tr>
<td>0.30</td>
<td>0.26</td>
</tr>
<tr>
<td>0.25</td>
<td>0.21</td>
</tr>
<tr>
<td>0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>