Features

- High performance curtain wall, ground-floor framing and entrance system, or horizontal strip window
- 24mm and 49mm IsoWeb™ glass-reinforced nylon thermal break provides:
 - Excellent condensation resistance
 - Ultra low thermal transmittance U-values
 - Rigid profiles with composite structural performance
- 7525 framing accommodates 25mm high performance double sealed units
- 7550 framing accommodates 50mm high performance triple sealed units
- EPDM sponge interior and EPDM rubber exterior gaskets (dry/dry glazing)
- Meets or exceeds the highest levels of CSA standard CAN/CSA-A440) Windows and AAMA 507
- Fully pressure equalized, rain screen design
- Simple stick, shear block, pressure plate construction
- Door adaptors for thermal entrances
- Two color option
- Permanodic™ anodized finishes in seven choices
- Painted finishes in standard and custom choices

For specific product applications,
Consult your Kawneer representative.
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

Architects – Most extrusion and window types illustrated in this catalog are standard products for Kawneer. These concepts have been expanded and modified to afford you design freedom. Some miscellaneous details are non-standard and are intended to demonstrate how the system can be modified to expand design flexibility. Please contact your Kawneer representative for further assistance.

PICTORIAL VIEW .. 5
CURTAIN WALL - GRID WALL ... 6-7
ALUMINUM SHEER PANELS ... 8-9
ALUMINUM FLUSH PANELS .. 10-11
ENTRANCE DETAILS .. 12
CORNER DETAILS ... 13
WIND LOAD CHARTS .. 14-18
THERMAL CHARTS ... 19-25

LAWS AND BUILDING AND SAFETY CODES GOVERNING THE DESIGN AND USE OF GLAZED ENTRANCE, WINDOW, AND CURTAIN WALL PRODUCTS VARY WIDELY. KAWNEER DOES NOT CONTROL THE SELECTION OF PRODUCT CONFIGURATIONS, OPERATING HARDWARE, OR GLAZING MATERIALS, AND ASSUMES NO RESPONSIBILITY THEREFOR.

Metric (SI) conversion figures are included throughout these details for reference. Numbers in parentheses () are millimeters unless otherwise noted.

The following metric (SI) units are found in these details:

- m – meter
- cm – centimeter
- mm – millimeter
- s – second
- Pa – pascal
- MPa – megapascal
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

7500 Wall™ Curtain Wall System

7500 WALL™

Tubular mullions and transoms with shear block construction.
Pressure equalized rain screen design.
High performance IsoWeb™ glass reinforced nylon thermal break.
7550 Wall shown, 7525 Wall similar.
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

7500 Wall™ Curtain Wall System
CURTAIN WALL - GRID WALL
SEPTEMBER, 2017
EC 97911-135

SCALE 3" = 1'-0"

ELEVATION IS NUMBER KEYED TO DETAILS

7525 - 25mm DOUBLE GLAZED

7550 - 50mm TRIPLE GLAZED

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.
7500 Wall™ Curtain Wall System

SCALE 3” = 1'-0”

7525 - 25mm DOUBLE GLAZED

6-5/16” (160.3)

Sleeve

Construction joint 1/2” (12.7)

(Allows ± 1/4” movement)

3

SILL - VISION PANEL

7550 - 50mm TRIPLE GLAZED

7-5/16” (185.7)

Sleeve

Construction joint 1/2” (12.7)

(Allows ± 1/4” movement)

3

SILL - VISION PANEL

Floor Slab

4

ANCHOR

5

HEAD - VISION PANEL

2-1/2” (63.5)

824211

824212

824302

824301

824202

824201

7525 - 25mm DOUBLE GLAZED

7550 - 50mm TRIPLE GLAZED

© Kawneer Company, Inc., 2013
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

SCALE 3" = 1'-0"

7525 - 25mm DOUBLE GLAZED

1/8" (3.2) 6-5/16" (164.3)

Sleeve

Construction joint 1/12" (12.7)
(Allows ±1/4" movement)

Mullion Length

2 SILL - VISION PANEL

3 PANEL STIFFENER

216027

4 HEAD - VISION PANEL

2-1/2" (63.5)

7550 - 50mm TRIPLE GLAZED

1/8" (3.2) 7-5/16" (185.7)

Sleeve

Construction joint 1/12" (12.7)
(Allows ±1/4" movement)

Mullion Length

2 SILL - VISION PANEL

3 PANEL STIFFENER

216027

4 HEAD - VISION PANEL

2-1/2" (63.5)
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

7500 Wall™ Curtain Wall System
SEPTEMBER, 2017
ALUMINUM FLUSH PANELS
EC 97911-135

SCALE 3" = 1'-0"

ELEVATION IS NUMBER KEYED TO DETAILS

7525 - 25mm DOUBLE GLAZED

7550 - 50mm TRIPLE GLAZED

1 MULLION
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

SCALE 3" = 1'-0"

7525 - 25mm DOUBLE GLAZED

- **Construction Joint**: 1/2" (12.7 mm)
- **Sill - Vision Panel**: 2
- **Panel Stiffener**: 3
- **Head - Vision Panel**: 4

7550 - 50mm TRIPLE GLAZED

- **Construction Joint**: 1/2" (12.7 mm)
- **Sill - Vision Panel**: 2
- **Panel Stiffener**: 3
- **Head - Vision Panel**: 4

ALUMINUM FLUSH PANELS

7500 Wall™ Curtain Wall System

ADMD110EN

SEPTEMBER, 2017
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

SCALE 3" = 1'-0"

7525 - 25mm DOUBLE GLAZED

1
DOOR JAMB
OFFSET PIVOT OR BUTT HUNG

2
DOOR TRANSOM

7550 - 50mm TRIPLE GLAZED

1
DOOR JAMB
OFFSET PIVOT OR BUTT HUNG

2
DOOR TRANSOM

3
THRESHOLD (7525 and 7550)
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement. © Kawneer Company, Inc., 2013
WIND LOAD CHARTS

Mullions are designed for deflection limitations in accordance with AAMA TIR-A11 of L/175 up to 13'-6" and L/240 +1/4" above 13'-6". These curves are for mullions WITH HORIZONTALS and are based on engineering calculations for stress and deflection. Allowable wind load stress for ALUMINUM 15,152 psi (104 MPa), STEEL 30,000 psi (207 MPa). Charted curves, in all cases are for the limiting value. Wind load charts contained herein are based upon nominal wind load utilized in allowable stress design. A conversion from Load Resistance Factor Design (LRFD) is provided. To convert ultimate wind loads to nominal loads, multiply ultimate wind loads by a factor of 0.6 per ASCE/SEI 7. A 4/3 increase in allowable stress has not been used to develop these curves. For special situations not covered by these curves, contact your Kawneer representative for additional information.
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

WIND LOAD CHARTS

允许应力
设计荷载
LRFD 极限
设计荷载

A = 20 PSF (960) 33 PSF (1580)
B = 30 PSF (1440) 50 PSF (2400)
C = 40 PSF (1920) 67 PSF (3200)
D = 50 PSF (2400) 83 PSF (4000)
E = 60 PSF (2880) 100 PSF (4790)

Windload charts are based on composite properties which are calculated in accordance with AAMA TIR-8 and AAMA 505.
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

WIND LOAD CHARTS

Allowable Stress Design Load LRFD Ultimate Design Load
A = 20 PSF (960) 33 PSF (1580)
B = 30 PSF (1440) 50 PSF (2400)
C = 40 PSF (1920) 67 PSF (3200)
D = 50 PSF (2400) 83 PSF (4000)
E = 60 PSF (2880) 100 PSF (4790)

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-8 AND AAMA 505
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

WIND LOAD CHARTS

MULLION CENTERS IN FEET

MULLION CENTERS IN FEET

WINDLOAD CHARTS ARE BASED ON COMPOSITE PROPERTIES WHICH ARE CALCULATED IN ACCORDANCE WITH AAMA TIR-8 AND AAMA 505

<table>
<thead>
<tr>
<th>Allowable Stress</th>
<th>LRFD Ultimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Load</td>
<td>Design Load</td>
</tr>
<tr>
<td>A = 20 PSF (960)</td>
<td>33 PSF (1580)</td>
</tr>
<tr>
<td>B = 30 PSF (1440)</td>
<td>50 PSF (2400)</td>
</tr>
<tr>
<td>C = 40 PSF (1920)</td>
<td>67 PSF (3200)</td>
</tr>
<tr>
<td>D = 50 PSF (2400)</td>
<td>83 PSF (4000)</td>
</tr>
<tr>
<td>E = 60 PSF (2880)</td>
<td>100 PSF (4790)</td>
</tr>
</tbody>
</table>
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

Allowable Stress Design Load	LRFD Ultimate Design Load
A = 20 PSF (960) | 33 PSF (1580)
B = 30 PSF (1440) | 50 PSF (2400)
C = 40 PSF (1920) | 67 PSF (3200)
D = 50 PSF (2400) | 83 PSF (4000)
E = 60 PSF (2880) | 100 PSF (4790)

Windload charts are based on composite properties which are calculated in accordance with AAMA TIR-8 and AAMA 505.
Example Glass U-Factor = 0.42 Btu/(ft²·h·°F)

Total Daylight (Vision) Area = ∑(Width × Height) = 3(5' × 7') + 3(5' × 2') = 135 ft²

Projected Total Area = 15'-8" × 9'-6" = 148.83 ft²

Percent of Vision Glass = (∑(Total Daylight Area) ÷ Projected Total Area) × 100
 = (135 ÷ 148.83) × 100 ≈ 91%

System U-factor vs Percent of Glass Area

Based on 66% glass and center of glass (COG) U-factor of 0.42
System U-factor is equal to 0.53 Btu/hr · ft² · °F
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

Note:
Values in parentheses are metric.
COG = Center of Glass.
Charts are generated per AMMA 507

System U-factor vs Percent of Glass Area

Notes for System U-factor, SHGC and VT charts:
For glass values that are not listed, linear interpolation is permitted.
Glass properties are based on center of glass values and are obtained from your glass supplier.
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

7500 Wall™ Curtain Wall System

ADMD110EN
SEPTEMBER, 2017

THERMAL CHARTS

7525 Wall (Double Glazed)

System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area

System Visible Transmittance (VT) vs Percent of Vision Area
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

7525 Wall (Double Glazed)

Thermal Transmittance\(^1\) (BTU/hr • ft\(^2\) • °F)

<table>
<thead>
<tr>
<th>Glass U-Factor 3</th>
<th>Overall U-Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.48</td>
<td>0.54</td>
</tr>
<tr>
<td>0.46</td>
<td>0.52</td>
</tr>
<tr>
<td>0.44</td>
<td>0.51</td>
</tr>
<tr>
<td>0.42</td>
<td>0.49</td>
</tr>
<tr>
<td>0.40</td>
<td>0.47</td>
</tr>
<tr>
<td>0.38</td>
<td>0.46</td>
</tr>
<tr>
<td>0.36</td>
<td>0.44</td>
</tr>
<tr>
<td>0.34</td>
<td>0.42</td>
</tr>
<tr>
<td>0.32</td>
<td>0.41</td>
</tr>
<tr>
<td>0.30</td>
<td>0.39</td>
</tr>
<tr>
<td>0.28</td>
<td>0.37</td>
</tr>
<tr>
<td>0.26</td>
<td>0.36</td>
</tr>
<tr>
<td>0.24</td>
<td>0.34</td>
</tr>
<tr>
<td>0.22</td>
<td>0.33</td>
</tr>
<tr>
<td>0.20</td>
<td>0.31</td>
</tr>
</tbody>
</table>

SHGC Matrix\(^2\)

<table>
<thead>
<tr>
<th>Glass SHGC 3</th>
<th>Overall SHGC 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.68</td>
</tr>
<tr>
<td>0.70</td>
<td>0.64</td>
</tr>
<tr>
<td>0.65</td>
<td>0.59</td>
</tr>
<tr>
<td>0.60</td>
<td>0.55</td>
</tr>
<tr>
<td>0.55</td>
<td>0.50</td>
</tr>
<tr>
<td>0.50</td>
<td>0.46</td>
</tr>
<tr>
<td>0.45</td>
<td>0.41</td>
</tr>
<tr>
<td>0.40</td>
<td>0.37</td>
</tr>
<tr>
<td>0.35</td>
<td>0.32</td>
</tr>
<tr>
<td>0.30</td>
<td>0.28</td>
</tr>
<tr>
<td>0.25</td>
<td>0.23</td>
</tr>
<tr>
<td>0.20</td>
<td>0.19</td>
</tr>
<tr>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Visible Transmittance\(^2\)

<table>
<thead>
<tr>
<th>Glass VT 3</th>
<th>Overall VT 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.67</td>
</tr>
<tr>
<td>0.70</td>
<td>0.63</td>
</tr>
<tr>
<td>0.65</td>
<td>0.58</td>
</tr>
<tr>
<td>0.60</td>
<td>0.54</td>
</tr>
<tr>
<td>0.55</td>
<td>0.49</td>
</tr>
<tr>
<td>0.50</td>
<td>0.45</td>
</tr>
<tr>
<td>0.45</td>
<td>0.40</td>
</tr>
<tr>
<td>0.40</td>
<td>0.36</td>
</tr>
<tr>
<td>0.35</td>
<td>0.31</td>
</tr>
<tr>
<td>0.30</td>
<td>0.27</td>
</tr>
<tr>
<td>0.25</td>
<td>0.22</td>
</tr>
<tr>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>

NOTE: For glass values that are not listed, linear interpolation is permitted.

1. U-Factors are determined in accordance with NFRC 100.
2. SHGC and VT values are determined in accordance with NFRC 200.
3. Glass properties are based on center of glass values and are obtained from your glass supplier.
4. Overall U-Factor, SHGC, and VT Matrices are based on the standard NFRC specimen size of 2,000 mm wide by 2,000 mm high (78-3/4" by 78-3/4").
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

7550 Wall (Triple Glazed)

System U-factor vs Percent of Glass Area

Note:
Values in parentheses are metric.
COG = Center of Glass.
Charts are generated per AMMA 507

Notes for System U-factor, SHGC and VT charts:
For glass values that are not listed, linear interpolation is permitted.
Glass properties are based on center of glass values and are obtained from your glass supplier.
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control the selection of product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

System Solar Heat Gain Coefficient (SHGC) vs Percent of Vision Area

System Visible Transmittance (VT) vs Percent of Vision Area
7500 Wall™ Curtain Wall System

THERMAL PERFORMANCE MATRIX (NFRC SIZE)

7550 Wall (Triple Glazed)

Thermal Transmittance \(\text{BTU/hr} \cdot \text{ft}^2 \cdot ^\circ \text{F} \)

<table>
<thead>
<tr>
<th>Glass U-Factor (^3)</th>
<th>Overall U-Factor (^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.36</td>
<td>0.43</td>
</tr>
<tr>
<td>0.34</td>
<td>0.41</td>
</tr>
<tr>
<td>0.32</td>
<td>0.39</td>
</tr>
<tr>
<td>0.30</td>
<td>0.37</td>
</tr>
<tr>
<td>0.28</td>
<td>0.36</td>
</tr>
<tr>
<td>0.26</td>
<td>0.34</td>
</tr>
<tr>
<td>0.24</td>
<td>0.32</td>
</tr>
<tr>
<td>0.22</td>
<td>0.31</td>
</tr>
<tr>
<td>0.20</td>
<td>0.29</td>
</tr>
<tr>
<td>0.18</td>
<td>0.27</td>
</tr>
<tr>
<td>0.16</td>
<td>0.26</td>
</tr>
<tr>
<td>0.14</td>
<td>0.24</td>
</tr>
<tr>
<td>0.12</td>
<td>0.22</td>
</tr>
<tr>
<td>0.10</td>
<td>0.21</td>
</tr>
<tr>
<td>0.08</td>
<td>0.19</td>
</tr>
</tbody>
</table>

SHGC Matrix \(^2\)

<table>
<thead>
<tr>
<th>Glass SHGC (^3)</th>
<th>Overall SHGC (^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.68</td>
</tr>
<tr>
<td>0.70</td>
<td>0.64</td>
</tr>
<tr>
<td>0.65</td>
<td>0.59</td>
</tr>
<tr>
<td>0.60</td>
<td>0.55</td>
</tr>
<tr>
<td>0.55</td>
<td>0.50</td>
</tr>
<tr>
<td>0.50</td>
<td>0.46</td>
</tr>
<tr>
<td>0.45</td>
<td>0.41</td>
</tr>
<tr>
<td>0.40</td>
<td>0.37</td>
</tr>
<tr>
<td>0.35</td>
<td>0.32</td>
</tr>
<tr>
<td>0.30</td>
<td>0.28</td>
</tr>
<tr>
<td>0.25</td>
<td>0.23</td>
</tr>
<tr>
<td>0.20</td>
<td>0.19</td>
</tr>
<tr>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Visible Transmittance \(^2\)

<table>
<thead>
<tr>
<th>Glass VT (^3)</th>
<th>Overall VT (^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.67</td>
</tr>
<tr>
<td>0.70</td>
<td>0.63</td>
</tr>
<tr>
<td>0.65</td>
<td>0.58</td>
</tr>
<tr>
<td>0.60</td>
<td>0.54</td>
</tr>
<tr>
<td>0.55</td>
<td>0.49</td>
</tr>
<tr>
<td>0.50</td>
<td>0.45</td>
</tr>
<tr>
<td>0.45</td>
<td>0.40</td>
</tr>
<tr>
<td>0.40</td>
<td>0.36</td>
</tr>
<tr>
<td>0.35</td>
<td>0.31</td>
</tr>
<tr>
<td>0.30</td>
<td>0.27</td>
</tr>
<tr>
<td>0.25</td>
<td>0.22</td>
</tr>
<tr>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>

NOTE: For glass values that are not listed, linear interpolation is permitted.

1. U-Factors are determined in accordance with NFRC 100.
2. SHGC and VT values are determined in accordance with NFRC 200.
3. Glass properties are based on center of glass values and are obtained from your glass supplier.
4. Overall U-Factor, SHGC, and VT Matrices are based on the standard NFRC specimen size of 2,000 mm wide by 2,000 mm high (78-3/4" by 78-3/4").

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.

© Kawneer Company, Inc., 2013

kawneer.com

ADMD110EN
Laws and building and safety codes governing the design and use of glazed entrance, window, and curtain wall products vary widely. Kawneer does not control product configurations, operating hardware, or glazing materials, and assumes no responsibility therefor.

Kawneer reserves the right to change configuration without prior notice when deemed necessary for product improvement.